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Abstract

Probabilistic networks (Bayesian networks) are suited as statistical pattern classifiers when the
feature variables are discrete. It is argued that their white-box character makes them transparent,
a requirement in various applications such as, e.g., credit scoring. In addition, the exact error rate
of a probabilistic network classifier can be computed without a dataset. First, the exact error rate
for probabilistic network classifiers is specified. Secondly, the exact sampling distribution for the
conditional probability estimates in a probabilistic network classifier is derived. Each conditional
probability is distributed according to the bivariate binomial distribution. Subsequently, an approach
for computing the sampling distribution and hence confidence intervals for the posterior probability in
a probabilistic network classifier is derived. Our approach results in parametric bootstrap confidence
intervals. Experiments with general probabilistic network classifiers, the Naive Bayes classifier and
tree augmented Naive Bayes classifiers (TANS) show that our approximation performs well. Also
simulations performed with the Alarm network show good results for large training sets. The amount
of computation required is exponential in the number of feature variables. For medium and large-scale
classification problems, our approach is well suited for quick simulations. A running example from the
domain of credit scoring illustrates how to actually compute the sampling distribution of the posterior
probability.
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1. Introduction

Most pattern classifiers are low-level in the sense that they represent the relations be-
tween explanatory variables (the features) and the prediction variable (the posterior class
distribution. Following the convention in statistical pattern recognition, we use the term
posterior probability to indicate the probabili(C = ¢; | X = X)) by a compact mathe-
matical function. Typical examples of such classifiers are support vector machines and feed-
forward neural networks. Other classifiers—classification trees and the k-nearest neighbor
classifier—are transparent in their nature, but the learned representation is often complex
(for a discussion see, e.d=sgmont-Petersen and Pelikan, 199Brobabilistic networks
(Bayesian networks or belief networks) are white-box compact statistical models of rela-
tions between discrete stochastic variables. In this article, we will show how probabilistic
networks can be used as statistical pattern classifiers, how to compute the exact error rate
and, most important, derive the sampling distributions for the parameter estimates and for
the posterior probability distribution of the classification variable, given the observed feature
vector.

Depending on the underlying classification problem, available domain knowledge can
take various formsEgmont-Petersen, 19R1For a problem like credit scorind@3aesens
etal., 20022003, bank employees can divide the explanatory variables into subgroups that
are related—or monotonous relations may be defined between explanatory variables and
the prediction variable (probability of default). In image processing, knowledge of which
spatial variations can be expected in a set of image®ies et al., 199%r of the typical
spatial interrelations between objecdschip et al., 2002, may be a priori available. Most
pattern classifiers are in fact black boxes in the sense that their parameters cannot be related
to domain knowledge. This limitation hampers incorporation of domain knowledge in these
pattern classifiers and make them less suited for data mining purposes. Well-known exam-
ples of black-box statistical classifiers are neural networks and support vector machines.
The weights in feed-forward neural networlumelhart et al., 1986nd the parameters
in a support vector machin®gpnik, 1998 cannot, in general, be related to underlying do-
main knowledge. More surprisingly, relating the parameters found by discriminant analysis
and the thresholds resulting from C4®&uinlan, 1993 to knowledge of the underlying
classification problem, is difficult in general. A discrete feature classifier of which the pa-
rameters have an intuitive meaning, is logistic regression with discrete explanatory variables
(Hosmer, 1984 Its parameters model the likelihood ratios associated with the classes that
are to be discriminated. Unfortunately, XOR-like classification probldRusr(elhart et al.,

1986 cannot be solved by logistic regression unless an interaction term is included as
additional variable.

In this article, we illustrate by an example from credit scoriBggsens et al., 200Bow
probabilistic networksl(auritzen and Spiegelhalter, 1988; Pearl, 19&h be tailored for
classification problems wittiscretevariables. Ideally, a minimal error-rate pattern classi-
fier computes the posterior probabilities of the class vari@blgiven an observed feature
vectorx. Based on this posterior probability distribution, classification in many applica-
tions is based on the winner-takes-all rule which assigns the most likely class label, e.g.
¢j, to the case characterized by the feature vectérprobabilistic network represents the
multivariate distribution of a set of discrete stochastic variables. Such a network uses a com-
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pact graphical representation—we address solely directed acyclic graphs—to specify direct
dependence relations between the stochastic variables. The nodes in the graph represent the
explanatory variables and the prediction variable. Each arc represents a direct dependency
relation between the pair of variables it connects. Each stochastic variable has associated
an (un)conditional probability table that specifies the (un)conditional probability distribu-
tions corresponding to the different value combinations of its parents (if any). Marginal and
conditional independence relations, given the class, are specified by the graph. The inde-
pendence relations represented by the graph specify how the joint probability distribution is
factorised. A probabilistic network lends itself as a white-box statistical classifier, because
its parameters constitute either marginal or conditional probabilities. The factorisation of
the conditional distributionP (C = ¢ | X = X), which is central in statistical pattern classi-

fiers, follows directly from the rules of dependency separation (so-called d-separation, see,
e.g.,Jensen, 1996

This article focuses on important aspects of probabilistic network classifiers. We present
two novel contributions: (1) the derivation of the exact sampling distribution of the condi-
tional probabilities in a probabilistic network classifier in the case where no prior is being
used and (2) an approximation of the sampling distribution of the probabilRi@S=c; |
X =X), associated with the (unknown) class membershjpj =1, ..., nc, of a case.

We derive a parametric bootstrap confidence interval for the conditional probahitity=

cj | X =X). The article is structured as follows. After having introduced the mathematical
notation, we give an example of a small Bayesian network classifier. Itis illustrated how the
posterior probability distribution? (C = ¢ | X = Xx), of the class variableZ, is computed

by means of the chain rule. We also specify the exact error rate of a probabilistic network
classifier. Secondly, the exact sampling distribution for each (un)conditional probability
is derived by a frequentist approach. Based on this, an approximate sampling distribution
for the posterior probabilities is derived. Thirdly, simulations are conducted with synthetic
probabilistic networks and with the well-known Alarm netwoBe{nlich et al., 1988 The

true empiric sampling distribution is compared with the sampling distribution that results
from our approach. In the discussion, limitations of our approach and issues for further
research are considered.

Our work is related to that of Friedman et akrigdman et al., 1999 They use a
bootstrapping approach to derive confidence statements about particular features of the
network structure(e.g., the presence of particular edges or other substructures). In con-
trast, we focus on establishing confidence bounds on the probabilities computed from
a network with a given structure (graph). Hence, our work complements that of
Friedman et al.

2. Background

After having introduced the notation, a probabilistic network is briefly defined. Subse-
guently, the general notion of a minimal error-rate classifier is introduced. An example of
how a probabilistic network can be used as a classifier is given.
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2.1. Notation

We use capital letterg,, B, ..., to denote stochastic variables and small letters, . . .,
toindicate particular observations. When required, a subscriptis used to indpeatiealar
outcome, e.gg;. With nc, the number of possible outcomes of the variaBlas indicated.
Bold italic letters x, y, z, indicate observation vectors, whereas bold capital letters&.g.,
indicate sets of observation vectors. Wili{X = X) we denote the probability that the
set of discrete variableX takes the specific value combinatian(In classic statistical
pattern recognitionuda and Hart, 1973 one usually works with continuous stochastic
variables and the associated probability density functigty; = X)). The joint state space
of the variables2 = Q4 x Qp -- -, is finite, which also holds for the number of possible
combinations of patterns € Qx that can be observed.

2.2. Minimal error-rate classifiers

In statistical pattern recognition, the overall goal is to build classifiers that minimize
the total riskR (Duda and Hart, 1973If we assume that the loss associated with a mis-
classification is symmetric (the gain of correctly classifying a case equals one minus the
loss of classifying the case wrongly), and that the costs of different misclassifications are
equal, the error rate suffices as assessment criteri@u@la and Hart, 1993 Hence, the
goal becomes to learn the pattern classifier that minimizes the error rate, the number of
mislabeled cases. Applications in which minimal error-rate classifiers have been employed
include prediction of the probability of default on a consumer Idd&esens et al., 20p2
recognition of leukocytes in video imagdsgmont-Petersen et al., 2Q@&hd recognition of
bone tumors in radiographEg§mont-Petersen and Pelikan, 199robabilistic classifiers
assign class labels = ¢; to cases based on a number of features or measurement values,
X =X. The conditional probability that the case associated with the vedtelongs to class
cj, is denoted byP (¢; | X). Hence, application of the winner-takes-all rule to the posterior
probability distribution of the class variab®
_ )i Pl 1 X)>Plci | X), Vi # ],
clasgx) = {@ . otherwise, 1)

results in the minimal error-rate classifier. Assuming that all cases are assigned a class label
(no ties), the fraction of misclassified cagds given by Hashlamoun et al., 1994

e= Y (1 — :23?(1% | x))) P(X). 2)

XeQy

In general, the true posterior probability distributi®X{c | x) is unknown andP (X) is
represented by a set of labeled caXesThe posterior probabilitie® (c | X) need to be
estimated from a trained classifier. For a trained classifier that models the multivariate
probability distributionP (x), the error rate may be computed from

B= Y (1_$3?(ﬁ(6 | x))) P(x). (3)

XeQyx
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From the definition of a probabilistic network classifier in Section 2.3, it will be clear that
its exact error rate can be computed directly from (3), although overfitting may ¢aoise
be a biasedAssen et al., 2002; Feelders, 2003; Friedman, 188#imate ot. For smaller
classifiers that model the complete multivariate probability distribuBign, it is feasible to
compute the error ratexactly. For example, 10 binary features resultin 1024 combinations
in Qx for which the probability of misclassification needs to be computed. For 20 binary
features, about 1 Million combinations »ieed to be evaluated.

Some pattern classifiers estimate solely the posterior probabifiiesx), but not the
multivariate probability distributios (x). Such classifiers include feed-forward neural net-
works and logistic regression. For such classifiers, the error rate has to be estimated from

1 .
00 =5 S (classx; Plc | %) # l(x)) : @)

xeX

with the classifier specific winner-takes-all rule class? (¢ | X)), the functior (x) specify-
ing the true class label of each veckoe X and/ (-) the indicator function. A representative
test seX drawn fromP(X) is required to compute an unbiased estinia¥ of the classi-
fier's error rate.

2.3. The probabilistic network classifier

The posterior probability distribution of the classification variallgis given by Bayes
formula

PX1cjPlcj) _ PXlcj)P(c))
P(x) Y PXci)Plei)

P(cj | X) = (5)

with P(x | ¢;) denoting the class-conditional probability function aAd;) the prior
probability associated with outcomef C.

We now define a probabilistic network as a model of a multivariate discrete probability
distribution, for an example sdgéig. 1L A probabilistic network modeM consists of a
directed acyclic grapf® and a set of probability tabled/, M = (G, W). The nodes of the
directed graphG, correspond to the set of random variables: D1, ..., D, and the edges
to direct dependencies between the variables. Whenr= 1, an arc emanates from node
i and points to nodg Wheng; ; = 0, there is no arc emanating from nddend pointing
to nodej. Henceforward, byt(A) we denote the direct parents of a nodleY = n(A)
(e.9.,n(C) ={A, B} inFig. 1), and the set of values of the parentshy,,. With ¢(A), we
denote the direct children of nodeThe set of probability table®y={ Wy .. . W}, specifies
(un)conditional probabilities of the typR(A =a | T(A) =Y, 4)), @ € a4, Yr(a) € Lr(a)-

A probabilistic network classifier represents the class-conditional distribubieas c ;)
implicitly. More specifically, given a complete observation vectpcomputation of the
probability P(c;, X) is efficient because of the independence relations that follow from
the graphical structure. Let= (c;, X) denote the complete observation vector including
the true class:;, corresponding to the stochastic variab®s= (C, X). The chain rule
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i a -a
Highincome |a |[0.3 Income Deposit

_ b |01]06 Large deposit
Lowincome |-a |0.7
-b [09 |04 Small deposit
Housing
a -a

Paymen

b -b b -b

Real estate [ e | 0.35 c 0.05| 0.5 | 0.45|0.6 Default

Tenant -e | 0.65 -c 09505 |055|04 Pay back
Security
Cc - C
e e |e - e

d 0.01| 0.5 | 0.75|0.31 Security given

-d |099|05 |0.25]0.69 No security

Fig. 1. Probabilistic network used in the example including the probability tables. The probabilistic network
connects the five stochastic variables Incomeg, Deposit(B), Payment(C), Security(D) and Housing E).
Based on the values of the four variables specific to an applidart, D, E, the probability of default can be
computed. All variables have to be discrete, see, Bagsens et al. (2002)

(see, e.gJensen, 1996

h
P(D=d) =[] P(Di =di | 7(Dy) = dr(n,)) ©
k=1

makes it feasible to use a probabilistic network as a classifier. From the definition of condi-
tional probability,P (X | ¢;) = P(cj, X)/ P(c;), and marginalisation over the class variable
C, P(X) =), P(ci, X), the posterior probability distribution & is computed from

P(X|cj)P(cj) _ P(cj,X)/P(cj) P(cj)

P ="55% PX)
P o
_—Z;ﬁlp(ci,x)’ j=1...,nc. (7

Little computation is required to calculate the joint probabiliyc;, X) for a given
probabilistic network as the direct dependencies that follow from the geagpecify the
factorisation ofP (c;, X). We give a brief example. In the remaining part of the article, we
assume that all feature and class variables are binary.

Example 1. In this example, we show how the probabilistic network depictdegnlcan
be used as a statistical classifier. Given the g@mtepicted inFig. 1 connecting the five



1004 M. Egmont-Petersen et al. / Computational Statistics & Data Analysis 49 (2005) 998—-1019
nodesA, B, C, D andE, the joint probabilitiesP (a, —b, ¢, —d, ¢) and P (a, —b, —c, —d, e)
can be computed by factorization and application of (7). The probalfility x) factorizes
into

P(a,—b,c,—d,e) = P(a)P(—b | a)P(c|a,—~b)P(—d | c,e)P(e). (8)
The terms can be found by direct table lookup in the probabilistic networkHige&)

P(a,—b,c,—d,e) =0.3 x 0.9 x 0.5 x 0.99 x 0.35=0.0467775 9)
and correspondingly

P(a,—b,—c,—d,e) =0.3 x 0.9 x 0.5x 0.25x%x 0.35=0.0118125 (20)
Following from (7)

0.0467775
P —b, — = =0.7984 11
(cla.=b.=d. &) = 4877751 0.0118125 O 00 (11)

andP(—c | a, —b,—d, e) = 0.2016.

When the outcome of one or more variables other tBaare unknown (missing), the
posterior probability of each unobserved variabfgz | v),Y C X,Z € X\Y, can
be computed efficiently by highly optimized algorithms, see, &gnsen et al. (1990)
Lauritzen and Spiegelhalter (1988)owever, in the situation faced in many applications of
statistical pattern classifiers, the outcome of each feature varébkmown. Consequently,
the posterior probability distributior (c; | X), can be computed efficiently as illustrated
in the example above. Moreover, complex graph-theoretic manipulations including trian-
gulation are avoided when using the chain rule for computing the posterior probability
distribution from the probabilistic network classifier.

In the situation addressed here, all feature variables are observed. Hence, the variables
that form theMarkov blankebf C, determine the probabilit (¢, x). The Markov blanket
is defined relative to a particular node in a probabilistic network. The Markov blankt of
consists of its parents(C), its childrens(C) and the parents of the children Gf namely
n(a(C)), other tharC. The terms of the chain rule used in (7) can be factorized into a term
Py solely related to the parents Gf a term,P>(C), comprising the posterior probability of
Cgiven its parents, a tern3(C), comprising the children of, and a termpP4, comprising
the parents of these children that are marginally independent @o8o (7) can at the
variable level be rewritten as

P(C=c| X=X
B P1P(C=c)P3(C=c)Py
~ P1Py(C =¢)P3(C =c¢)Pa+ PLP2(C = —c)P3(C = —c) Py’

(12)
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Pr= [] PG | 7(Xpy)),
k1en(C)
Py(C) = P(C | Xz(c)),

PaC)= [] P(Xi, | C.1(Xi)\O),
koea(C)

Py= I P(Xiy | m(Xs)) (13)
kzen(a(CH\{C U m(C)Ua(c)}

for the two-class classifier, with( ¢(C) ) denoting the union of the sets of parents with
each such set being the parents of a child nodg. @asically, only the term#,(C) and
P3(C) vary with C whereasP; and P4 remain constant for each outcomgof C. Hence
P1 and P4 can be divided out ané (¢ | X) reduces to
Plc|x) = P2(c) P3(c) (14)
P2(c) P3(c) + (1 = P2(c)) P3(—c)
for the two-class problem. This result will be used to simplify the computation of the
sampling distribution o (¢ | x). For later use, we define a topological ortigopological
refers to the order of the nodes in the graph imposed by the arcs) on the (un)conditional
probabilities involved in the computation &f(c¢ | X) in the probabilistic network classifier
as specified in (14)
1 ={P(C=c|Ync))
P(X1=x1|¢,Yrixone)s s PXw =xg | ¢, Yrx,\0) (15)
P(X1=x1 | =¢, Ynuxi\0)s - - P(Xw = Xg | =€, Yrx, 00}

with w the number of childreis(C)| of the classification node. The ordered sedntains
2w + 1 probability terms for a two-class problem.

Example 1 (Continued). In the probabilististic network classifier in Fig.with the case
X=(a, b, —d, e),thetermP,=P(a) P(—b | a),the second term»(C=c)=P(c | a, —b),
P>(C=—-¢)=P(—c | a,—b) the thirdtermP3(C=c)=P(e | ¢, ~d), P3(C=—c)=P(e |
—c, —d), and the fourth termPs = P(d). For this networkt = {P(c | a, —b), P(—d |
¢, e), P(—d | —c,e)}, with w = 1 becauseX7 in (15) corresponds with variab[@. So for
this network classifier, given the casg(14) becomes

P(c|a,—b,—d,e)
. P(c|a,—b)P(—d |c,e)
a P(c|a,—b)P(—d|c,e)+ (1 — P(c|a,—b)P(—d | —c,e)

The posterior probability (¢ | a, =b, —d, e) is computed from the three conditional prob-
abilities P(c | a, =b), P(—d | ¢, e) andP(—d | —c, e).

(16)

3. Sampling distribution of class variable

Classification is generally performed by a classifier that has been learned from a database
D. For a probabilistic network classifier, an important distinction should be made between
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learning the grapks that specifies the direct dependencies between the variables (see e.qg.,
Friedman et al., 1999and learning the probability tabl#g. In the remaining part of this
article, we assume the graghto be given. The (un)conditional probabilities represented
by W are estimated from the complete databBswith N cases. Maximum-likelihood
estimation from the database, pak(W | D), has a unique solutiolV, see further
Friedman et al. (1997)

3.1. Sampling distribution of conditional probabilities

The probability distribution of the conditional probability estimakec | x), is derived.
In the sequel, no priors? (W), are used resulting in a frequentist probability model. Oth-
ers have derived approximate confidence intervals for the posterior probabilities, when the
Bayesian approach has been taken to sample the parameters of probabilistic networks using
Dirichlet priors @llen et al., 200). According to our frequentist approach, if a partic-
ular combination of variables does not occur in the learning databasiee associated
(un)conditional probabilities are set to zero. For examplég jif-b) for the network de-
picted inFig. 1does not appear D, Vc € Q¢ : P(c | a, —b) =0. The consequence of this
choice is that feature combinatiorshat are not contained in the training set, result in the
denominator of (7) being zero. Hence, extrapolation is circumvented. In general, the larger
the training set for a particular probabilistic network classifier, the smaller is the probability
that P(x) = 0.

It follows from (7) that the posterior probability<OP (¢ | x)<1. The denominator
P(X)= > P(c;, X) is the estimated probability that the feature vegtirobservedp (x) +
Y we@yp P (X) = 1. LettingN denote the size of the samyile the frequencyV P (x) is
binomially distributed, because each case the databas® that is used to estimate the
probability tabledV, has either the specific combinatigmr not

N(X) ~ B(N, P(X)), a7)

with N (x) indicating the number of occurrencesdh D. Similarly, the sampling distribu-
tion for the frequency of the estimated numerator of §7F,(c, X), is binomially distributed

N(c,X) ~ B(N, P(c, X)), (18)

with N (¢, X) indicating the number of occurrencegefx) in D. From the derivatigns inthe
appendix, it follows that the sampling distribution of the conditional probab#tity | x)
is given by the product of two binomial distributions

P(P(c|X), P(X) | P(c|X), P(X), N)
= (" ) P(c | )" (L= P(c | x)*™ (Z) P (1= POx)™N P,

m
m<k, ke{0,...,N}, (19)

with P(c | X)=m/k, P(xX)=k/N.Eq. (19) is the exact formula for the sampling distribution
of any conditional probability in a probabilistic network, and for the bivariate sampling
distribution of P (¢ | X) and P (x), for given values o’ (¢ | X), P(X) and the sample siag.
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0.35 1 Distribution from
03 4 S|mulat|F)n .

= Exact bivariate
Z. 0.25 binomial distribution
o
- 0.2
g
©
E 0.15 1
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o
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P (c,x) estimate
Fig. 2. This graph shows the computed and a simulated empirical sampling distributidhe ofx), given

P(c | x)=0.7984 andP (x) =0.05859,N = 100 cases in a databases 1000 sampled databases. The probability
P(c | X) and the distribution corresponds to the running example.

Example 1 (Continued). The small example network iRig. 1 can illustrate the use of
(19). The probability

P(a, —b,—d, e) =0.046784 0.01181= 0.05859 (20)

and P(—c | a, —b, —d, e) = 0.7984. Withp = 0.05859,r = 0.7984,X = (a, —b, —d, e)
and a sample size & = 2, the following probability is obtained

Pk=0,m=0]|r,p,x,2)=P(P(c|x)=0,k=0)
0 o (2 _
- (O) -0 (0> P°a-pe?

=1-(1-0.058592 =0.8863 (21)
Likewise, the remaining probabilities become

Ptk=1m=0]|r, p,X 2) =0.0222

Pk=1m=1|r p,X 2)=0.0881

Pk=2m=0|r p,X,2)=140x 1074,

Pk=2,m=1]|r, p, X 2) =0.0011

Pk=2m=2|r p, X, 2)=0.0022 (22)

The sumy_, >, <, P(k.m | 1, p,X,2) = 1. Now, P(P(c | X) =0) = Y, P(k,m =0 |
r, p, X, 2) = 0.90863, which is the probability that the estimdté | x) equals zero given
the parameterp, r and a sample sizd. The outcome of the variablés= P(c | X) and
p=P(x) follow from r =m/k andp =k/N. Fig. 2shows this distribution, but fa¥ =100
cases instead of 2.
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As the ratior = m/k, it is clear that the number of possible conditional probabilities
increases with the sample sikeWe will sample the distribution afinto uniformly sized
intervals. The distribution of;(P(c | X) | P(c | X), P(X), N) is sampled intov + 2
intervals by

P (Pc|x P05 5
l(<c|>e[v+l ))

= > Pk,m |7, p, %, N), (23)
kom <k | m/ke[(i—0.5)/(v+1)%0)

withi € {1,...,v+2}anddo =1/(2(v + 1)). P; is a multinomial distribution withv + 2
outcomes and parameters specifiedtby, m | r, p, X, N). In short, the distribution of
P(c | x) is denoted byP; (P (c | X) | v, 8), for given parameter values p, x andN. To
sample the distribution of the class varialilea matrixP is defined in which each row
corresponds to a probability term in the orderedtset defined in (15). Each of the+ 2
columns corresponds to an interval probability estimate

PL(P(C | V() € Lty £0) o Pui2(P(e | Yaey) € [PEPS £ 0))

PLPGy | € Yuxpn0) €l £0) oo Pyya(Plxy | ¢ Yyxpn o) € [EEEL22 £0))
PL(P(xg | —e 148y e Prya(Plrg | e v2-05 4 5
1(P(xg | =€, Yrixy)\ €) € lygz £9) v+2(P(xq [ =¢, Yax,\0) € [Z05T - +0)

(24)

The matrixP contains the sampled distributions of each of the terms in the topological
orderingt, row k € {0, ..., 2w} corresponds to probability term. The parameters of
these distributions are denoted ®y with the parameters of rowbeingf;, = {P(D; =d |
dr(p,)), P(dr(py))}. These two parameters, which are denatesh p in the distribution
derived in the appendix, specify the conditional probability of obsergligiyen the values
of its parentsd,(p,) and the probability of observing this parent combinatiBiy(3).

3.2. Sampling distribution of class variable

The sampling distribution in (19) does not capture the distributid(ef| x) as computed
from a Probabilistic network classifier where the classification node has at least one parent
and one child. The reason is that each (un)conditional probability distributidM is
normalized,P(Dy = d; | u(py)) + P(Di = —d; | Or(p,)) = 1, unlessP (dy(p,)) = 0. In
other words, the estimate3(c | x) computed using (7) are solely distributed as specified
by (23) when the classification node has only parents. For such a network classifier, the
sampling distribution ofP(c | X) is given by the single parametét(c | Xzc)) (The
probability P (X)) and the sample sizd still codetermine the sampling distribution of
P(c | X)), i.e., the special situation whers(C) = 1 in (14).

When the probability? (¢ | X) is composed of more random terms such thaC) # 1,
(23) does not capture the distribution in an appropriate manner. Instead, we will assume
that the terms in (15) that form the posterior probability, (14), are distributed independently.
More formally, the following conditional independence relations (according to the notation
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P (Estimated P (c,x))

0.1 A

0.05 -
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Fig. 3. The graph depicts the true sampling distribution8 @f | x), N = 100, 500 and 1000 cases. An increasing
sample sizé&l makes estimates close to the true underlying conditional probability 0.7984 more likely.

introduced byDawid, 1979 are assumed

P(Di=d | Yap) AL P(D;=d,y | Zupp) | Yup;)» Zupi)-
wheni # j,

P(D; =di | Vo) L P(Di=dn | Zen)) | Yany: Ze(Dy): (25)
wheny; p,) # Zn(ny)-

The simplification implies that all distributions of the parents of each node are sampled
independently from each other. In the sequel, we denote the sampling distribution of a
probabilistic network classifier bz (c | x). The bias introduced by this simplification,
which is necessary to make computatiorﬁ@f(c | X) tractable, will be investigated experi-
mentally. Consequently, we compute the sampling distribution of the probabilistic network
classifier, (7), from

P(Pg(c|X)£d | v, N)

=Y [I Preawo: (9 €{Polc|x) 0}, (26)
S ke(O.....2w)
with the multi-indexs = (so x ---s¢ -+ X S2w))!| on the variableg e {0,..., 2w},

in the topological ordering defined by (15) and = 1/(2(v + 1)). The indicess; €
{1/2,1 1/2,...,v + 1/2} represent the estimated posterior probabiRy(c | X), with
the functionel(s) indicating the element in the set represented;bylrhe functionf is
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defined as
S0 51 Sw
e <v+l v+1 v+1>/
S0 S Swoy (g S0 ) Swed o Sew ) 5y
v+1 v+1 v+1 v+1) v+1 v+1

The values ofPz(c | x) = 1 are included in the last interval in (26). Finally, define the
product termP(s) as

PO= [] Preo (28)
ke{0,...,2w}

We illustrate the use of this formula with the running example.

Example 1 (Continued). The sampling distributions of the three terms in the topological
ordert, P(c | a,—b), P(—d | ¢,e) andP(—d | —c, e), are obtained from (23). For the
firstterm,p = P(a, —=b) = P(a) P(—b | a) = 0.27, andr = 0.5. Similarly, for the second
probability termint, p = P(c, e) = P(c) P(e) = 0.172725 and = 0.99, and for the third
term,p = P(—c, ¢) = P(—c) P(e) =0.177275 and = 0.25. The resulting distributions for
N =100 andv =1 are
P(P(c|a,—b)|v,N)
P=|:P(f’(—-d|c,e)|v,N):| = 0 0 1
P(P(—d | —c,e) | v, N) 0.7655 0.2340 Q000
The probability for each combination efs being computed by nested for-loops, one loop
for each index;.. For example, for the valug(s)=(2, 3, 1), the corresponding probability
P(s) =0.9118x 1 x 0.7655= 0.6980. The complete table becomes

(29)

|: 0.0379 0.9118 0.0503:|
5

s3=0.5 52 s3=1.5 52 s3=25 52
0.5 1.5 2.5 0.5 1.5 2.5 0.5 1.5 2.5

s1 =05

f(s) 0.1667 0.3750 0.5000 0.0625 0.1667 0.2500 0.0385 0.1071 0.1667

P(s) 0 0 0.0290 0 0 0.0089 0 0 0
s1=15

f(s) 0.5000 0.75000.8333 0.2500 0.5000 0.6250 0.1667 0.3750 0.5000

P(s) 0 0 0.6980 0 0 0.2133 0 0 MO05
s1=25

f(s) 0.8333 0.9375 0.9615 0.6250 0.8333 0.8929 0.5000 0.75@338

P(s) 0 0 0.0385 0 0 0.0118 0 0 0

The distribution is ordered into intervals resulting in the final distribuftg®s (c | X) £ |

v, N) = (0.0089 0.2428 0.7483 corresponding taPz(c | X) = 1/(2 x 3) + 8, Ps(c |
X)=3/(2x3) £ andPg(c | X)= 5/(2 x 3) £ 0. So the most frequent observed probability
Py (c | X) occurs within the range.83+ 0.17.
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Finally, we can now define the parametric bootstrap confidence intefziisn(and
Tibshirani, 1993 of Pg(c | X). The parameterd), in a probabilistic network classifier
are estimated from a learning set. These (un)conditional probabilities correspond to an
estimate of the parameter matri®, from which the probability distributiof defined in
(24) can be computed using the bivariate binomial distribution derived in the appendix.
Now either compute or simulate the distributigs). Define the cumulative distribution of
P(s) with respect tof (s) as%p. The following parametric bootstrap interval resuEéron
and Tibshirani, 1993Chapter 13)

[Ps(c | X))o, Pa(c | X)upl = [€p (). €pH(1 - w)]. (30)

The distribution in each row iR, defined in (24), is independent from the distribution in
each of the other rows. Hence, instead of compuBi(gy by summing over all possible com-
binations of the rows iR(s), a number of samples can be drawn from each row-distribution.
An example is shown ohttp://www.cs.uu.nl/people/michael/Tutorials/conf-int.html.

4. Experiments

In this section, we report a number of experiments in which the derived sampling distri-
bution of the probability? (¢ | x) is being compared with sampling distributions obtained
from simulations. For the first simulation, the network depictegig 1is used. Using logic
sampling Henrion, 1988 n = 1000 samples, each consisting®f= 100 or 500 cases,
were obtained from the network. From each sample, the (un)conditional probabilities for
a network with the same graph were estimated by maximum likelihood. This network was
used to estimate the probabilijz (¢ | x) corresponding to a particular combinationaof
andx. This resulted in 1000 estimates®Bf (c | X). Our approach presented in the previous
section was used to compute the approximation to the distributidty af | x). The root-
mean-squared difference (RMSD) between the sample and the prediction was computed
over all thev + 2 intervals, as was the absolute difference between the two means (MD).
The choice o is reported inTable 1

4.1. Experiments with synthetic networks

Four different probabilistic network classifiers were used to verify whether the derived
sampling distribution of (¢ | X) approximates the real distributions well. The first network
classifier is the one used in the running example throughout this articl&ige# The
specific factorization into independent conditional distributions follows from (16). The
second network classifigfjg. 4, was defined explicitly to disclose the influence of the first
assumption specified in (25). The multivariate distribution was designed in a way such that
the estimate of the probabilit® (¢) has a high degree of co-variation with the estimate of
the probabilityP (a). Hence, in a sample where less than 95% of the randomly generated
cases have the feature valde= a, the estimated probabilit® (¢) is also likely to be lower
than 088. This again influences the conditional probability distributions in the tables of the
variablesB andD. Recall that this effect is disregarded in our approach in order to make the
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Table 1

Experimental results obtained

n = 1000 samples P(c|X) P(X) N =100 N =500
RMSD MD RMSD MD

Netl (40 interv)
P(c|a,—b,—d,e) 0.7984 0.0586 0.0072 0.0003 0.0225 0.0020
P(c|—a,—b,d,e) 0.0196 0.0300 0.0667 0.0098 0.0328 0.0060

Net2 (40 interv)

13(0 |a,b,d) 0.9986 0.6550 0.0008 0.0001 0.0000 0.0000

P(c|—a,—b,d) 0.3684 0.0071 0.0169 0.0032 0.0046 0.0057
Net3 (40 interv)*

P(cla,—b,d,e) 0.0182 0.0411 0.0041 0.0002 0.0034 0.0004

f’(c | —a, —=b, —d, —e) 0.5870 0.0690 0.0052 0.0041 0.0082 0.0036

P(c|a,—b,—d,—e) 0.1364 00330 00062 00032 Q0036 00015
Net4 (40 interv)*

P(c|a,—b,d,—e) 0.6534 00327 Q0067 00024 Q0074 00019

ﬁ(c | a,—b,d,e) 0.9754 Q0511 00024 Q0007 00028 Q0005

ﬁ(c | —a, b, —d, e) 0.1712 00946 Q0076 00103 00072 00013

The asterisk * indicates network classifiers where simulations from the nfatwere used to estimate the
difference between the estimated and the real sampling distribution.

computations tractable. The probability distribution of the second network factorizes into
the following components:

P(c|a,b,d)
B P(c|la)P(b|c)P(d|b,c)
T P(cla)P(b| )P |b,c)+(1—P(c|a)P(b|—c)P(d|b,—c)

(31)

The third networkFig. 5, is a Naive Bayes classifier, which is probably one of the most
frequently used pattern classifiers. Its probability distribution factorizes into the following
components

P(c)P(a|c)P(=b|c)P(d |c)P(e]c)
P()P(a|c)P(—b|c)P(d | c)P(e]|c)+
(1—P(c)P(a]|—c)P(=b|—c)P(d | —c)P(e| —c).
(32)

P(c|a,—b,d,e)=

Finally, we constructed a tree-augmented Naive Bayes (TAN) netwbBriedman
et al., 1997 with the purpose of validating our approach for this type of classifier. The
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Fig. 4. Probabilistic network used in the second experiment.
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a 0.1]05 b 0.75| 0.05 d 0.1 ]0.85 e 0.6 10.2

-a |09 ]05 -b [0.25 0.95 -d (0.9 ]0.15 -e (0408

Fig. 5. Probabilistic network, Naive Bayes classifier, used in the third experiment.
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Fig. 6. Probabilistic (TAN) network used in the fourth experiment.

TAN-network is depicted in Figs. The probabilityP (¢ | x) factorizes as follows:

P(c|a,—b,d, —e)
P(c)P(a|c)P(—=b|a,c)P(d|a,c)P(—e|c,d)
“ P@)P(a|c)P(=bla,c)P(d | —a,c)P(—e|c, d)+
(1— P(c))P(a| —c)P(—b|a,—c)Pd|a,—c)P(—e|—c,d).

(33)

The results from the experiments shownTable lindicate that the derived sampling
distribution of the posterior probability obtained from a probabilistic network classifier,
follows the real underlying distribution well. The most imprecise distributions correspond
with probabilities close to 0 or 1. The ‘binning’ into intervals causes a discretisation error
in the narrow distributions that occur for probabilities close to 0 and 1. The experiments
with the network with the skew distribution in Fig, does not seem to give poorer results
than the simulations with the three other classifiers.

The approach is exponential in its computational complexity. In practice, when the num-
ber of terms in the topological se¢xceeds a small number (e.g., (4)), stochastic simulation
from each of the distributions in the matfXis necessary to estimate the sampling distribu-
tion of Pg(c | X). As each row irP represents an independent distribution, such a sampling
from each row distribution is straightforward.
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Table 2
Experimental results obtained with the Alarm network
P(a|x) P(X N =100 N =500 N =1000
RMSD MD RMSD MD RMSD MD
P(a|b,c dy,er) 0.3356 00056 00890 00633 Q0177 00225 Q0165 Q0082
P(a|b.—c, do, e1) 0.9954 00085 00298 01494 Q0076 00028 Q0223 00030
P(a|b,c, do,eo) 1.0000 06094 Q0000 Q0000 QOOO0O  QOOOO  QOOOO Q0000

P(a|b,—c, dy, e1) 0.5025 00019 01409 06941 Q0631 02376 Q0274 01204
P(a|—b,—c,di.e1) 0.0011 00084 00917 Q1789 Q0015 Q0036 QOOOO  QOOOO

All sampling distributions ofP(a | X) where simulations from the matriR.

4.2. Experiment with the ALARM network

Experiments with the well-known Alarm networBéinlich et al., 198pwere performed
to give an indication of how the sampling distribution is approximated for a large (realistic)
probabilistic network classifier. Essentially, the Alarm network is a classifier because the
outcome of one particular node, corresponding to the variabiailure, is being moni-
tored. The markov blanket dfvfailure contains the four feature variablésstory, Hy-
povolemia Lvedvolumend StrokevolumeNe rename the variables in the following way:
A = Lvfailure, B= History, C = HypovolemiaD = LvedvolumeandE = StrokevoluméNe
performed simulation experiments with five different combinations of the four
feature variables, seEable 2 The variablesA, B and C are binary whereas the feature
variablesD andE have three outcomes.

The Alarm network is difficult to sample because the distribution is skew. In more than
60% of the cases, the combinati@h c, d», e2) occurs resulting in a probabilitf’(a |
b, ¢, do, e2) = 1. In many samples, one or more conditional probabilities tend to be either
0 or 1. As the sample size grows, the estimated sampling distribution converges towards the
true underlying distribution. The largest discrepancy was observed for the rare combination
b, —c, d1, e1. As would be expected, the sampling distributions with the smallest bias are
obtained for learning sets with a siae= 1000.

5. Discussion

In this article, we described how a probabilistic network can be used as a minimal error-
rate statistical classifier. The exact error rate was given and related to error rate estimates
common in statistical pattern recognition. Secondly, we derived the exact sampling dis-
tribution of the conditional probabilities in a probabilistic network classifier. Based on
this result, an approximate sampling distribution is derived for the conditional probability
P(C =c | X = x) with cthe class label anda complete feature vector.
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Fig. 7. Prediction by the theoretical formula for the network used in the running example, true posterior probability
P(c | X) =0.7984.

The experiments we performed indicate that the sampling distribution computed by our
approach corresponds well with the simulated one. Solely when the true prob&lgdity
X) lies outside the interval0.05, 0.95), our approach results in slightly skew estimated
sampling distributions. The key to this positive result seems to be that we use the exact
bivariate binomial distributions of the underlying conditional probabilities to estimate the
sampling distribution ofP (¢ | X). Itis our advice not to use the Gaussian approximation
to the binomial distribution, unless the sample size becomes large. More specifically, the
productP (x) - N determines the fraction of cases in a dataliadgkat actually contribute
to estimating the conditional probabilit® (¢ | x). Our simulation experiments with the
Alarm network suggest that the sampling distribution (and hence confidence intervals)
become reliable wheR (x) - N > 5. The more variables and arcs a graph includes, the more
conditional probabilities need to be estimated. It is also clear from our experiments (see also
Fig. 7), that the approximation usually made that the sampling distribution is symmetric
(see, e.g., the Bayesian approactilign et al., 200}, does not hold, even wheh(c | X)
is rather close to 2.

Probabilistic networks, in general, suffer from #hase of dimensionalityA large num-
ber of variables or a graph where one or more nodes have many parents, implies an in-
creasing variance of the parameter estimates. This follows directly from the bivariate bi-
nomial distribution derived in the appendix. When an increasing number of parameters
come into play, while the sizB of the learning database remains constant, the variance
of the probability estimate®(c | x) inevitably grows. Our approach to computing the
sampling distribution can be used to control the amount of variance in the sense that the
effect of changing the size of the training 9¢tcan be estimated. Others have used a
Bayesian approach based on Dirichlet priors to smooth the conditional probability estimates.
Dirichlet priors may be seen as an aid for controlling the curse of dimensionality through
regularization.
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We have restricted our approach to binary classification problems. The approach gen-
eralizes directly to feature variables with more than two outcomes, as was illustrated by
the experiments with the Alarm network. Our approach can be extended to problems with
more than two classes, but the computational complexity will grow exponentially. For the
two-class problem, the posterior probability distribution can be simulated using our ap-
proach when the number of independent components in the ordeitegkseeds say 4. As
shown by our experiments with the Naive bayes and the TAN classifiers as well as with
the Alarm network, such a simulation is unproblematic. Each sampled distribution (row)
in the matrixP defined in (24) is assumed to be independent from the others. Applying
the standard uniform distributiamd —available in most modern numerical software—to
each cumulative distribution, e.g?i(ﬁ(x, | ¢, Ynx,_nc) €10£ 9)), results in an index
sx and a probabilityPy e/(s;) -

Finally, we would like to mention the smoothing effect that occurs when the feature
variables are children of the class variable, rather than parents. If say four boolean variables
were used as parents, resulting in a large tatifewith 2* entries, the exact formula for
P, p | r p,X, N)derived in the appendix indicates the sampling distribution of the class
variableC. The result is a rather ragged distribution (similar to the one depictEwir),
unless either the number of cases or the probability of observing this particular combination
of the parents becomes really large. As soon as (un)conditional probabilities are sampled
independently, as is the case in all the networks used in our experiments, a more smooth
sampling distribution of (¢ | x) results.

6. Conclusion

In this article, we showed how a general probabilistic network can be used as a statistical
classifier, resulting in a probabilistic network classifier. We specified how the exact error rate
can be computed for such a probabilistic network classifier, without the need of a training set.
We then derived the exact sampling distribution for the conditional probability estimates in
a probabilistic network. Subsequently, an approach for computing the sampling distribution
and hence confidence intervals for the conditional probabfiity | x) in a probabilistic
network classifier was derived. When the confidence intervals are accurate enough, it is
also possible to test different hypotheses regarding the probability of class membership of a
casex. Experiments revealed that our approximation performs well on general probabilistic
network classifiers (where the class node has parents as well as children), on the Naive
Bayes classifier and on tree augmented Naive Bayes networks. We also tested our approach
on the well-known Alarm network. The amount of computation required is exponential in
the number of feature variables. For medium and large scale classification problems, our
approach is well-suited for quick simulations.

In the future, several issues can be investigated further. It would be desirable to establish
a bound on the approximation error that is made by our approach. Such a bound could
hopefully indicate types of underlying probability distributions for which the approximation
derived here performs well. Itwould also be interesting to extend our approach to incorporate
priors on the parameters.
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Appendix A

Definep = P(X), ¢ = P(c,X) andr = P(c | X). The sampling distributions q¥ andg
becomeP(p N | p, N) = B(N, p) andP(g N | q, N) = B(N, gq). Solely for sufficiently
large probabilities and sample sizg#y > 50 (Egmont-Petersen etal., 199the continuous
Gaussian distribution is suited as approximation. Consequently, we derive the distribution
of 7 from the exact binomial distribution8(~N, p) andB(N, g). To simplify the notation,
we write P(p | p, N) meaningP (pN | p, N). The distribution ofp is given by

P(p|p, N)= (f{v) PFa—-p®H  kefo,...,N}, (A1)

with p =k/N and (]1{\/) the binomial coefficient. Similarly, the distribution &fbecomes

P |q,N)= (Z)w Q=)™ mel{0,...,N}, (A.2)

with § =m/N. Itis clear thatp andq are statistically dependent,= 0 = ¢ = 0. As no
priors are usedp andg may be zero. Moreover, wheiww becomes small, the resulting
courser sampling scheme limits the possible estimatés of

Ourgoalistocomput® (7 | r, p, X, N),7 € (0, 1), fromD withr=¢/p. The conditional
sampling distributionP (7 | r, p, X, N) is given by

P@ |7 px, N) = (km)rm @=n% " m<k, (A-3)

with » = P(c | X), 7 =m/k and p = k/N. The variablek denotes the actual number of
cases in a sample datab&with the combinatiorx, whereasndenotes the actual number
of cases irD, with the combinatiorx, that belong to the class In general, the chain rule
allows us to write the bivariate distributiad®(7, p | r, p) asP( | r, p, p)P(p | r, p), and
becausé is independentrom p given p (the posterior probability is estimated from the
subsample of cases D with the feature vectox, i.e., p determines the distribution &,
P, p|r,p)=PF | r, p)P(p | r p).Finally, asp is independent from(the probability
of observing cases with the feature vectanarginalises over the class variable, hence the
relation betweerP (c; | X) and P(¢; | X) does not influencg = >, P(¢;, X) = P(X)), it
follows thatP (7, p | r, p) = P(7 | r, p)P(p | p). Consequently, the bivariate distribution
P(#, p | r, p, X, N) becomes

PF,p|lr,p, X, Ny =P@F |r,p,X, N)P(p | p, X, N). (A.4)
The expression on the right-hand side of (A.4) is a product of two binomial distributions
PEpIrpxN) = (S )ma—ntm (V) k@ po-b
’ T m m " (AD)
m<k, ke{0,...,N},

with 7 =m/k, p = k/N. Equation (A.5) is the exact formula for the bivariate sampling
distribution of P (¢ | X) and P (x), for given values o’ (¢ | X), P(X) and the sample siag.
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