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Abstract

Probabilistic networks (Bayesian networks) are suited as statistical pattern classifiers when the
feature variables are discrete. It is argued that their white-box character makes them transparent,
a requirement in various applications such as, e.g., credit scoring. In addition, the exact error rate
of a probabilistic network classifier can be computed without a dataset. First, the exact error rate
for probabilistic network classifiers is specified. Secondly, the exact sampling distribution for the
conditional probability estimates in a probabilistic network classifier is derived. Each conditional
probability is distributed according to the bivariate binomial distribution. Subsequently, an approach
for computing the sampling distribution and hence confidence intervals for the posterior probability in
a probabilistic network classifier is derived. Our approach results in parametric bootstrap confidence
intervals. Experiments with general probabilistic network classifiers, the Naive Bayes classifier and
tree augmented Naive Bayes classifiers (TANs) show that our approximation performs well. Also
simulations performed with the Alarm network show good results for large training sets. The amount
of computation required is exponential in the number of feature variables. For medium and large-scale
classification problems, our approach is well suited for quick simulations.A running example from the
domain of credit scoring illustrates how to actually compute the sampling distribution of the posterior
probability.
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1. Introduction

Most pattern classifiers are low-level in the sense that they represent the relations be-
tween explanatory variables (the features) and the prediction variable (the posterior class
distribution. Following the convention in statistical pattern recognition, we use the term
posterior probability to indicate the probabilityP(C = cj | X = x)) by a compact mathe-
matical function. Typical examples of such classifiers are support vector machines and feed-
forward neural networks. Other classifiers—classification trees and the k-nearest neighbor
classifier—are transparent in their nature, but the learned representation is often complex
(for a discussion see, e.g.,Egmont-Petersen and Pelikan, 1999). Probabilistic networks
(Bayesian networks or belief networks) are white-box compact statistical models of rela-
tions between discrete stochastic variables. In this article, we will show how probabilistic
networks can be used as statistical pattern classifiers, how to compute the exact error rate
and, most important, derive the sampling distributions for the parameter estimates and for
theposterior probability distribution of the classification variable, given theobserved feature
vector.

Depending on the underlying classification problem, available domain knowledge can
take various forms (Egmont-Petersen, 1991). For a problem like credit scoring (Baesens
et al., 2002, 2003), bank employees can divide the explanatory variables into subgroups that
are related—or monotonous relations may be defined between explanatory variables and
the prediction variable (probability of default). In image processing, knowledge of which
spatial variations can be expected in a set of images (Cootes et al., 1995) or of the typical
spatial interrelations between objects (Archip et al., 2002), may be a priori available. Most
pattern classifiers are in fact black boxes in the sense that their parameters cannot be related
to domain knowledge. This limitation hampers incorporation of domain knowledge in these
pattern classifiers and make them less suited for data mining purposes. Well-known exam-
ples of black-box statistical classifiers are neural networks and support vector machines.
The weights in feed-forward neural networks (Rumelhart et al., 1986) and the parameters
in a support vector machine (Vapnik, 1998) cannot, in general, be related to underlying do-
main knowledge. More surprisingly, relating the parameters found by discriminant analysis
and the thresholds resulting from C4.5 (Quinlan, 1993) to knowledge of the underlying
classification problem, is difficult in general. A discrete feature classifier of which the pa-
rameters have an intuitive meaning, is logistic regression with discrete explanatory variables
(Hosmer, 1984). Its parameters model the likelihood ratios associated with the classes that
are to be discriminated. Unfortunately, XOR-like classification problems (Rumelhart et al.,
1986) cannot be solved by logistic regression unless an interaction term is included as
additional variable.

In this article, we illustrate by an example from credit scoring (Baesens et al., 2002) how
probabilistic networks (Lauritzen and Spiegelhalter, 1988; Pearl, 1988) can be tailored for
classification problems withdiscretevariables. Ideally, a minimal error-rate pattern classi-
fier computes the posterior probabilities of the class variableC, given an observed feature
vectorx. Based on this posterior probability distribution, classification in many applica-
tions is based on the winner-takes-all rule which assigns the most likely class label, e.g.
cj , to the case characterized by the feature vectorx. A probabilistic network represents the
multivariate distribution of a set of discrete stochastic variables. Such a network uses a com-
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pact graphical representation—we address solely directed acyclic graphs—to specify direct
dependence relations between the stochastic variables. The nodes in the graph represent the
explanatory variables and the prediction variable. Each arc represents a direct dependency
relation between the pair of variables it connects. Each stochastic variable has associated
an (un)conditional probability table that specifies the (un)conditional probability distribu-
tions corresponding to the different value combinations of its parents (if any). Marginal and
conditional independence relations, given the class, are specified by the graph. The inde-
pendence relations represented by the graph specify how the joint probability distribution is
factorised. A probabilistic network lends itself as a white-box statistical classifier, because
its parameters constitute either marginal or conditional probabilities. The factorisation of
the conditional distribution,P(C = c | X= x), which is central in statistical pattern classi-
fiers, follows directly from the rules of dependency separation (so-called d-separation, see,
e.g.,Jensen, 1996).

This article focuses on important aspects of probabilistic network classifiers. We present
two novel contributions: (1) the derivation of the exact sampling distribution of the condi-
tional probabilities in a probabilistic network classifier in the case where no prior is being
used and (2) an approximation of the sampling distribution of the probabilities,P(C= cj |
X = x), associated with the (unknown) class membershipcj , j = 1, . . . , nC , of a casex.
We derive a parametric bootstrap confidence interval for the conditional probabilityP(C=
cj | X = x). The article is structured as follows. After having introduced the mathematical
notation, we give an example of a small Bayesian network classifier. It is illustrated how the
posterior probability distribution,P(C = c | X = x), of the class variable,C, is computed
by means of the chain rule. We also specify the exact error rate of a probabilistic network
classifier. Secondly, the exact sampling distribution for each (un)conditional probability
is derived by a frequentist approach. Based on this, an approximate sampling distribution
for the posterior probabilities is derived. Thirdly, simulations are conducted with synthetic
probabilistic networks and with the well-knownAlarm network (Beinlich et al., 1989). The
true empiric sampling distribution is compared with the sampling distribution that results
from our approach. In the discussion, limitations of our approach and issues for further
research are considered.

Our work is related to that of Friedman et al. (Friedman et al., 1999). They use a
bootstrapping approach to derive confidence statements about particular features of the
networkstructure(e.g., the presence of particular edges or other substructures). In con-
trast, we focus on establishing confidence bounds on the probabilities computed from
a network with a given structure (graph). Hence, our work complements that of
Friedman et al.

2. Background

After having introduced the notation, a probabilistic network is briefly defined. Subse-
quently, the general notion of a minimal error-rate classifier is introduced. An example of
how a probabilistic network can be used as a classifier is given.
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2.1. Notation

Weusecapital letters,A,B, . . . , to denote stochastic variables and small letters,a, b, . . . ,

to indicate particular observations.When required, a subscript is used to indicate aparticular
outcome, e.g.,cj .With nC , the number of possible outcomes of the variable,C, is indicated.
Bold italic letters,x, y, z, indicate observation vectors, whereas bold capital letters, e.g.,X,
indicate sets of observation vectors. WithP(X = x) we denote the probability that the
set of discrete variablesX takes the specific value combinationx (In classic statistical
pattern recognition (Duda and Hart, 1973), one usually works with continuous stochastic
variables and the associated probability density function,p(X = x)). The joint state space
of the variables,� = �A × �B · · ·, is finite, which also holds for the number of possible
combinations of patternsx ∈ �X that can be observed.

2.2. Minimal error-rate classifiers

In statistical pattern recognition, the overall goal is to build classifiers that minimize
the total riskR (Duda and Hart, 1973). If we assume that the loss associated with a mis-
classification is symmetric (the gain of correctly classifying a case equals one minus the
loss of classifying the case wrongly), and that the costs of different misclassifications are
equal, the error rate� suffices as assessment criterion (Duda and Hart, 1973). Hence, the
goal becomes to learn the pattern classifier that minimizes the error rate, the number of
mislabeled cases. Applications in which minimal error-rate classifiers have been employed
include prediction of the probability of default on a consumer loan (Baesens et al., 2002),
recognition of leukocytes in video images (Egmont-Petersen et al., 2000) and recognition of
bone tumors in radiographs (Egmont-Petersen and Pelikan, 1999). Probabilistic classifiers
assign class labelsC = cj to cases based on a number of features or measurement values,
X=x. The conditional probability that the case associated with the vectorx belongs to class
cj , is denoted byP(cj | x). Hence, application of the winner-takes-all rule to the posterior
probability distribution of the class variableC

class(x)=
{
j : P(cj | x)>P (ci | x), ∀i 	= j,
∅ : otherwise,

(1)

results in the minimal error-rate classifier. Assuming that all cases are assigned a class label
(no ties), the fraction of misclassified cases� is given by (Hashlamoun et al., 1994)

� =
∑

x∈�X

(
1− max

c∈�C
(P (c | x))

)
P(x). (2)

In general, the true posterior probability distributionP(c | x) is unknown andP(x) is
represented by a set of labeled casesX. The posterior probabilitiesP(c | x) need to be
estimated from a trained classifier. For a trained classifier that models the multivariate
probability distributionP(x), the error rate may be computed from

�̂ =
∑

x∈�X

(
1− max

c∈�C
(P̂ (c | x))

)
P̂ (x). (3)
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From the definition of a probabilistic network classifier in Section 2.3, it will be clear that
its exact error rate can be computed directly from (3), although overfitting may cause�̂ to
be a biased (Assen et al., 2002; Feelders, 2003; Friedman, 1997) estimate of�. For smaller
classifiers that model the complete multivariate probability distributionP(x), it is feasible to
compute the error ratê�exactly. For example, 10 binary features result in 1024 combinations
in �X for which the probability of misclassification needs to be computed. For 20 binary
features, about 1 Million combinations ofx need to be evaluated.

Some pattern classifiers estimate solely the posterior probabilitiesP̂ (c | x), but not the
multivariate probability distribution̂P(x). Such classifiers include feed-forward neural net-
works and logistic regression. For such classifiers, the error rate has to be estimated from

�̂(X)= 1

|X|
∑
x∈X

I
(
class(x; P̂ (c | x)) 	= l(x)

)
, (4)

with the classifier specific winner-takes-all rule class(x; P̂ (c | x)), the functionl(x) specify-
ing the true class label of each vectorx ∈ X andI (·) the indicator function.A representative
test setX drawn fromP(x) is required to compute an unbiased estimate�̂(X) of the classi-
fier’s error rate.

2.3. The probabilistic network classifier

The posterior probability distribution of the classification variable,C, is given by Bayes
formula

P(cj | x)= P(x | cj )P (cj )
P (x)

= P(x | cj )P (cj )∑
iP (x | ci)P (ci) , (5)

with P(x | cj ) denoting the class-conditional probability function andP(cj ) the prior
probability associated with outcomej of C.

We now define a probabilistic network as a model of a multivariate discrete probability
distribution, for an example seeFig. 1. A probabilistic network modelM consists of a
directed acyclic graphG and a set of probability tables,W,M = (G,W). The nodes of the
directed graph,G, correspond to the set of random variablesD=D1, . . . , Dh and the edges
to direct dependencies between the variables. Whengi,j = 1, an arc emanates from node
i and points to nodej. Whengi,j = 0, there is no arc emanating from nodei and pointing
to nodej. Henceforward, by�(A) we denote the direct parents of a nodeA, Y = �(A)
(e.g.,�(C)= {A,B} in Fig. 1), and the set of values of the parents byy�(A). With �(A), we
denote the direct children of nodeA. The set of probability tables,W={W1 . . .Wh}, specifies
(un)conditional probabilities of the typeP(A= a | �(A)= y�(A)), a ∈ �A, y�(A) ∈ ��(A).

A probabilistic network classifier represents the class-conditional distributionsP(x | cj )
implicitly. More specifically, given a complete observation vectorx, computation of the
probability P(cj , x) is efficient because of the independence relations that follow from
the graphical structure. Letd = (cj , x) denote the complete observation vector including
the true classcj , corresponding to the stochastic variablesD = (C,X). The chain rule
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Fig. 1. Probabilistic network used in the example including the probability tables. The probabilistic network
connects the five stochastic variables Income(A), Deposit(B), Payment(C), Security(D) and Housing(E).
Based on the values of the four variables specific to an applicant,A,B,D,E, the probability of default can be
computed. All variables have to be discrete, see, e.g.,Baesens et al. (2002).

(see, e.g.,Jensen, 1996)

P(D = d)=
h∏
k=1

P(Dk = dl | �(Dk)= d�(Dk)) (6)

makes it feasible to use a probabilistic network as a classifier. From the definition of condi-
tional probability,P(x | cj )=P(cj , x)/P (cj ), and marginalisation over the class variable
C, P(x)= ∑

iP (ci, x), the posterior probability distribution ofC is computed from

P(cj | x)= P(x | cj )P (cj )
P (x)

= P(cj , x)/P (cj ) P (cj )
P (x)

= P(cj , x)∑nC
i=1P(ci, x)

, j = 1, . . . , nC. (7)

Little computation is required to calculate the joint probabilityP(cj , x) for a given
probabilistic network as the direct dependencies that follow from the graphG specify the
factorisation ofP(cj , x). We give a brief example. In the remaining part of the article, we
assume that all feature and class variables are binary.

Example 1. In this example, we show how the probabilistic network depicted inFig. 1can
be used as a statistical classifier. Given the graphG depicted inFig. 1connecting the five
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nodesA,B,C,D andE, the joint probabilitiesP(a,¬b, c,¬d, e) andP(a,¬b,¬c,¬d, e)
can be computed by factorization and application of (7). The probabilityP(c, x) factorizes
into

P(a,¬b, c,¬d, e)= P(a)P (¬b | a)P (c | a,¬b)P (¬d | c, e)P (e). (8)

The terms can be found by direct table lookup in the probabilistic network (seeFig. 1)

P(a,¬b, c,¬d, e)= 0.3× 0.9× 0.5× 0.99× 0.35= 0.0467775 (9)

and correspondingly

P(a,¬b,¬c,¬d, e)= 0.3× 0.9× 0.5× 0.25× 0.35= 0.0118125. (10)

Following from (7)

P(c | a,¬b,¬d, e)= 0.0467775

0.0467775+ 0.0118125
= 0.7984 (11)

andP(¬c | a,¬b,¬d, e)= 0.2016.

When the outcome of one or more variables other thanC are unknown (missing), the
posterior probability of each unobserved variable,P(z | y), Y ⊂ X,Z ∈ X\Y , can
be computed efficiently by highly optimized algorithms, see, e.g.,Jensen et al. (1990);
Lauritzen and Spiegelhalter (1988). However, in the situation faced in many applications of
statistical pattern classifiers, the outcome of each feature variablex is known. Consequently,
the posterior probability distribution,P(cj | x), can be computed efficiently as illustrated
in the example above. Moreover, complex graph-theoretic manipulations including trian-
gulation are avoided when using the chain rule for computing the posterior probability
distribution from the probabilistic network classifier.

In the situation addressed here, all feature variables are observed. Hence, the variables
that form theMarkov blanketofC, determine the probabilityP(cj , x). The Markov blanket
is defined relative to a particular node in a probabilistic network. The Markov blanket ofC
consists of its parents�(C), its children�(C) and the parents of the children ofC, namely
�(�(C)), other thanC. The terms of the chain rule used in (7) can be factorized into a term
P1 solely related to the parents ofC, a term,P2(C), comprising the posterior probability of
Cgiven its parents, a term,P3(C), comprising the children ofC, and a term,P4, comprising
the parents of these children that are marginally independent fromC. So (7) can at the
variable level be rewritten as

P(C = c | X = x)

= P1P2(C = c)P3(C = c)P4

P1P2(C = c)P3(C = c)P4 + P1P2(C = ¬c)P3(C = ¬c)P4
, (12)
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P1 =
∏

k1∈�(C)

P (Xk1 | �(Xk1)),

P2(C)= P(C | X�(C)),

P3(C)=
∏

k2∈�(C)

P (Xk2 | C,�(Xk2)\C),

P4 =
∏

k3∈�(�(C))\{C ∪ �(C)∪�(c)}
P(Xk3 | �(Xk3)) (13)

for the two-class classifier, with�(�(C) ) denoting the union of the sets of parents with
each such set being the parents of a child node ofC. Basically, only the termsP2(C) and
P3(C) vary withC whereasP1 andP4 remain constant for each outcomecj of C. Hence
P1 andP4 can be divided out andP(c | x) reduces to

P(c | x)= P2(c)P3(c)

P2(c)P3(c)+ (1− P2(c))P3(¬c) (14)

for the two-class problem. This result will be used to simplify the computation of the
sampling distribution ofP̂ (c | x). For later use, we define a topological ordert (topological
refers to the order of the nodes in the graph imposed by the arcs) on the (un)conditional
probabilities involved in the computation ofP(c | x) in the probabilistic network classifier
as specified in (14)

t = {P(C = c | y�(C)),

P (X1 = xl | c, y�(X1)\C), . . . , P (Xw = xq | c, y�(Xw)\C),
P (X1 = xl | ¬c, y�(X1)\C), . . . , P (Xw = xq | ¬c, y�(Xw)\C)},

(15)

with w the number of children|�(C)| of the classification node. The ordered sett contains
2w + 1 probability terms for a two-class problem.

Example 1 (Continued). In the probabilististic network classifier in Fig.1 with the case
x=(a,¬b,¬d, e), the termP1=P(a)P (¬b | a), the second termP2(C=c)=P(c | a,¬b),
P2(C=¬c)=P(¬c | a,¬b) the third termP3(C=c)=P(e | c,¬d),P3(C=¬c)=P(e |
¬c,¬d), and the fourth termP4 = P(d). For this network,t = {P(c | a,¬b), P (¬d |
c, e), P (¬d | ¬c, e)}, with w = 1 becauseX1 in (15) corresponds with variableD. So for
this network classifier, given the casex, (14) becomes

P(c | a,¬b,¬d, e)
= P(c | a,¬b)P (¬d | c, e)
P (c | a,¬b)P (¬d | c, e)+ (1− P(c | a,¬b))P (¬d | ¬c, e) . (16)

The posterior probabilityP(c | a,¬b,¬d, e) is computed from the three conditional prob-
abilitiesP(c | a,¬b), P(¬d | c, e) andP(¬d | ¬c, e).

3. Sampling distribution of class variable

Classification is generally performed by a classifier that has been learned from a database
D. For a probabilistic network classifier, an important distinction should be made between
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learning the graphG that specifies the direct dependencies between the variables (see e.g.,
Friedman et al., 1999), and learning the probability tablesW. In the remaining part of this
article, we assume the graphG to be given. The (un)conditional probabilities represented
by W are estimated from the complete databaseD with N cases. Maximum-likelihood
estimation from the database, maxWL(W | D), has a unique solution̂W, see further
Friedman et al. (1997).

3.1. Sampling distribution of conditional probabilities

The probability distribution of the conditional probability estimate,P̂ (c | x), is derived.
In the sequel, no priors,P(W), are used resulting in a frequentist probability model. Oth-
ers have derived approximate confidence intervals for the posterior probabilities, when the
Bayesian approach has been taken to sample the parameters of probabilistic networks using
Dirichlet priors (Allen et al., 2001). According to our frequentist approach, if a partic-
ular combination of variables does not occur in the learning databaseD, the associated
(un)conditional probabilities are set to zero. For example, if(a,¬b) for the network de-
picted inFig. 1does not appear inD, ∀c ∈ �C : P(c | a,¬b)=0. The consequence of this
choice is that feature combinationsx that are not contained in the training set, result in the
denominator of (7) being zero. Hence, extrapolation is circumvented. In general, the larger
the training set for a particular probabilistic network classifier, the smaller is the probability
thatP(x)= 0.

It follows from (7) that the posterior probability 0� P̂ (c | x)�1. The denominator
P̂ (x)=∑

i P̂ (ci, x) is the estimated probability that the feature vectorx is observed,̂P(x)+∑
x′∈(�X\x)P̂ (x

′)= 1. LettingN denote the size of the sampleD, the frequencyNP̂ (x) is
binomially distributed, because each casex in the databaseD that is used to estimate the
probability tablesW, has either the specific combinationx or not

N(x) ∼ B(N,P (x)), (17)

withN(x) indicating the number of occurrences ofx in D. Similarly, the sampling distribu-
tion for the frequency of the estimated numerator of (7),NP̂ (c, x), is binomially distributed

N(c, x) ∼ B(N,P (c, x)), (18)

withN(c, x) indicating the number of occurrences of(c, x) in D. From the derivations in the
appendix, it follows that the sampling distribution of the conditional probabilityP̂ (c | x)
is given by the product of two binomial distributions

P(P̂ (c | x), P̂ (x) | P(c | x), P (x), N)

=
(
k

m

)
P(c | x)m(1− P(c | x))(k−m)

(
N

k

)
P(x)k(1− P(x))(N−k),

m�k, k ∈ {0, . . . , N}, (19)

with P̂ (c | x)=m/k, P̂ (x)=k/N . Eq. (19) is the exact formula for the sampling distribution
of any conditional probability in a probabilistic network, and for the bivariate sampling
distribution ofP̂ (c | x) andP̂ (x), for given values ofP(c | x),P(x) and the sample sizeN.
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Example 1 (Continued). The small example network inFig. 1 can illustrate the use of
(19). The probability

P(a,¬b,¬d, e)= 0.04678+ 0.01181= 0.05859 (20)

andP(¬c | a,¬b,¬d, e) = 0.7984. Withp = 0.05859,r = 0.7984,x = (a,¬b,¬d, e)
and a sample size ofN = 2, the following probability is obtained

P(k = 0,m= 0 | r, p, x,2)= P(P̂ (c | x)= 0, k = 0)

=
(

0
0

)
r0(1− r)(0−0)

(
2
0

)
p0(1− p)(2−0)

= 1 · (1− 0.05859)2 = 0.8863. (21)

Likewise, the remaining probabilities become

P(k = 1,m= 0 | r, p, x,2)= 0.0222,

P (k = 1,m= 1 | r, p, x,2)= 0.0881,

P (k = 2,m= 0 | r, p, x,2)= 1.40× 10−4,

P (k = 2,m= 1 | r, p, x,2)= 0.0011,

P (k = 2,m= 2 | r, p, x,2)= 0.0022. (22)

The sum
∑
k

∑
m�k P (k,m | r, p, x,2) = 1. Now,P(P̂ (c | x) = 0) = ∑

kP (k,m = 0 |
r, p, x,2)= 0.90863, which is the probability that the estimateP̂ (c | x) equals zero given
the parametersp, r and a sample sizeN. The outcome of the variableŝr = P̂ (c | x) and
p̂= P̂ (x) follow from r=m/k andp=k/N . Fig. 2shows this distribution, but forN=100
cases instead of 2.
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As the ratior = m/k, it is clear that the number of possible conditional probabilities
increases with the sample sizeN. We will sample the distribution ofr into uniformly sized
intervals. The distribution ofPi(P̂ (c | x) | P(c | x), P (x), N) is sampled intov + 2
intervals by

Pi

(
P̂ (c | x) ∈

[
i − 0.5

v + 1
± �

))
=

∑
k,m�k | m/k∈[(i−0.5)/(v+1)±�)

P (k,m | r, p, x, N), (23)

with i ∈ {1, . . . , v + 2} and� = 1/(2(v + 1)). Pi is a multinomial distribution withv + 2
outcomes and parameters specified byP(k,m | r, p, x, N). In short, the distribution of
P̂ (c | x) is denoted byPi(P̂ (c | x) | v, �), for given parameter valuesr, p, x andN. To
sample the distribution of the class variableC, a matrixP is defined in which each row
corresponds to a probability term in the ordered sett as defined in (15). Each of thev + 2
columns corresponds to an interval probability estimate

P =



P1(P̂ (c | y�(C)) ∈ [ 1

v+1 ± �)) · · · Pv+2(P̂ (c | y�(C)) ∈ [ v+2−0.5
v+1 ± �))

P1(P̂ (xl | c, y�(X1)\C) ∈ [ 1
v+1 ± �)) · · · Pv+2(P̂ (xl | c, y�(X1)\C) ∈ [ v+2−0.5

v+1 ± �))

. . .

P1(P̂ (xq | ¬c, y�(Xw)\ C) ∈ [ 1
v+1 ± �)) · · · Pv+2(P̂ (xq | ¬c, y�(Xw)\C) ∈ [ v+2−0.5

v+1 ± �))


 .

(24)

The matrixP contains the sampled distributions of each of the terms in the topological
orderingt, row k ∈ {0, . . . ,2w} corresponds to probability termtk. The parameters of
these distributions are denoted by�, with the parameters of rowk being�k = {P(Dk = d |
d�(Dk)), P (d�(Dk))}. These two parameters, which are denotedr en p in the distribution
derived in the appendix, specify the conditional probability of observingd given the values
of its parentsd�(Dk) and the probability of observing this parent combination (Fig. 3).

3.2. Sampling distribution of class variable

Thesamplingdistribution in (19) doesnot capture thedistributionofP̂ (c | x)ascomputed
from a Probabilistic network classifier where the classification node has at least one parent
and one child. The reason is that each (un)conditional probability distribution inW is
normalized,P̂ (Dk = dl | d�(Dk)) + P̂ (Dk = ¬dl | d�(Dk)) = 1, unlessP̂ (d�(Dk)) = 0. In
other words, the estimateŝP(c | x) computed using (7) are solely distributed as specified
by (23) when the classification node has only parents. For such a network classifier, the
sampling distribution ofP̂ (c | x) is given by the single parameterP(c | x�(C)) (The
probabilityP(x�(C)) and the sample sizeN still codetermine the sampling distribution of
P̂ (c | x)), i.e., the special situation whereP3(C)= 1 in (14).

When the probabilityP(c | x) is composed of more random terms such thatP3(C) 	= 1,
(23) does not capture the distribution in an appropriate manner. Instead, we will assume
that the terms in (15) that form the posterior probability, (14), are distributed independently.
More formally, the following conditional independence relations (according to the notation
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Fig. 3. The graph depicts the true sampling distributions ofP̂ (c | x),N = 100, 500 and 1000 cases. An increasing
sample sizeNmakes estimates close to the true underlying conditional probability 0.7984 more likely.

introduced byDawid, 1979) are assumed

P̂ (Di = dl | y�(Di)) @ P̂ (Dj = dm | z�(Dj )) | y�(Dj ), z�(Di),
when i 	= j,

P̂ (Di = dl | y�(Di)) @ P̂ (Di = dm | z�(Di)) | y�(Di), z�(Di),
wheny�(Di) 	= z�(Di).

(25)

The simplification implies that all distributions of the parents of each node are sampled
independently from each other. In the sequel, we denote the sampling distribution of a
probabilistic network classifier bŷPB(c | x). The bias introduced by this simplification,
which is necessary to make computation ofP̂B(c | x) tractable, will be investigated experi-
mentally. Consequently, we compute the sampling distribution of the probabilistic network
classifier, (7), from

P(P̂B(c | x)± � | v,N)
=

∑
s

∏
k∈{0,...,2w}

Pk,el(sk), f (s) ∈ {P̂B(c | x)± �}, (26)

with the multi-indexs = (s0 × · · · sk · · · × s(2w))T on the variablesk ∈ {0, . . . ,2w},
in the topological orderingt defined by (15) and� = 1/(2(v + 1)). The indicessk ∈
{1/2,1 1/2, . . . , v + 1/2} represent the estimated posterior probabilityP̂B(c | x), with
the functionel(sk) indicating the element in the set represented bysk. The functionf is
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defined as

f (s)=
(
s0

v + 1
· s1

v + 1
· · · sw

v + 1

)/
(
s0

v + 1
· s1

v + 1
· · · sw

v + 1
+

(
1− s0

v + 1

)
s(w+1)

v + 1
· · · s(2w)

v + 1

)
. (27)

The values ofP̂B(c | x) = 1 are included in the last interval in (26). Finally, define the
product termP(s) as

P(s)=
∏

k∈{0,...,2w}
Pk,el(sk). (28)

We illustrate the use of this formula with the running example.

Example 1 (Continued). The sampling distributions of the three terms in the topological
order t, P(c | a,¬b), P(¬d | c, e) andP(¬d | ¬c, e), are obtained from (23). For the
first term,p = P(a,¬b)= P(a)P (¬b | a)= 0.27, andr = 0.5. Similarly, for the second
probability term int, p = P(c, e)= P(c)P (e)= 0.172725 andr = 0.99, and for the third
term,p=P(¬c, e)=P(¬c)P (e)=0.177275 andr =0.25. The resulting distributions for
N = 100 andv = 1 are

P =
[
P(P̂ (c | a,¬b) | v,N)
P (P̂ (¬d | c, e) | v,N)
P (P̂ (¬d | ¬c, e) | v,N)

]
=

[0.0379 0.9118 0.0503
0 0 1

0.7655 0.2340 0.0005

]
. (29)

The probability for each combination ofs is being computed by nested for-loops, one loop
for each indexsk. For example, for the valueel(s)=(2,3,1)T, the corresponding probability
P(s)= 0.9118× 1× 0.7655= 0.6980. The complete table becomes

s3 = 0.5 s2 s3 = 1.5 s2 s3 = 2.5 s2
0.5 1.5 2.5 0.5 1.5 2.5 0.5 1.5 2.5

s1 = 0.5
f (s) 0.1667 0.3750 0.5000 0.0625 0.1667 0.2500 0.0385 0.1071 0.1667
P(s) 0 0 0.0290 0 0 0.0089 0 0 0

s1 = 1.5
f (s) 0.5000 0.75000.8333 0.2500 0.5000 0.6250 0.1667 0.3750 0.5000
P(s) 0 0 0.6980 0 0 0.2133 0 0 0.0005

s1 = 2.5
f (s) 0.8333 0.9375 0.9615 0.6250 0.8333 0.8929 0.5000 0.7500 0.8333
P(s) 0 0 0.0385 0 0 0.0118 0 0 0

The distribution is ordered into intervals resulting in the final distributionP(P̂B(c | x)±� |
v,N) = (0.0089,0.2428,0.7483) corresponding toP̂B(c | x) = 1/(2 × 3) ± �, P̂B(c |
x)=3/(2×3)±� andP̂B(c | x)=5/(2×3)±�. So the most frequent observed probability
P̂B(c | x) occurs within the range 0.83± 0.17.
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Finally, we can now define the parametric bootstrap confidence intervals (Efron and
Tibshirani, 1993) of PB(c | x). The parameters,̂W, in a probabilistic network classifier
are estimated from a learning set. These (un)conditional probabilities correspond to an
estimate of the parameter matrix,�̂, from which the probability distributionP defined in
(24) can be computed using the bivariate binomial distribution derived in the appendix.
Now either compute or simulate the distributionP(s). Define the cumulative distribution of
P(s) with respect tof (s) asCP. The following parametric bootstrap interval results (Efron
and Tibshirani, 1993, Chapter 13)

[P̂B(c | x)lo, P̂B(c | x)up] = [C−1
P (�),C

−1
P (1− �)]. (30)

The distribution in each row in̂P, defined in (24), is independent from the distribution in
each of the other rows. Hence, instead of computingP(s) by summing over all possible com-
binations of the rows inP(s), a number of samples can be drawn from each row-distribution.
An example is shown onhttp://www.cs.uu.nl/people/michael/Tutorials/conf-int.html.

4. Experiments

In this section, we report a number of experiments in which the derived sampling distri-
bution of the probabilityP̂B(c | x) is being compared with sampling distributions obtained
from simulations. For the first simulation, the network depicted inFig. 1is used. Using logic
sampling (Henrion, 1988), n = 1000 samples, each consisting ofN = 100 or 500 cases,
were obtained from the network. From each sample, the (un)conditional probabilities for
a network with the same graph were estimated by maximum likelihood. This network was
used to estimate the probabilitŷPB(c | x) corresponding to a particular combination ofc
andx. This resulted in 1000 estimates ofP̂B(c | x). Our approach presented in the previous
section was used to compute the approximation to the distribution ofP̂B(c | x). The root-
mean-squared difference (RMSD) between the sample and the prediction was computed
over all thev + 2 intervals, as was the absolute difference between the two means (MD).
The choice ofv is reported inTable 1.

4.1. Experiments with synthetic networks

Four different probabilistic network classifiers were used to verify whether the derived
samplingdistributionof̂PB(c | x)approximates the real distributionswell.Thefirst network
classifier is the one used in the running example throughout this article, seeFig. 1. The
specific factorization into independent conditional distributions follows from (16). The
second network classifier,Fig. 4, was defined explicitly to disclose the influence of the first
assumption specified in (25). The multivariate distribution was designed in a way such that
the estimate of the probabilityP(c) has a high degree of co-variation with the estimate of
the probabilityP(a). Hence, in a sample where less than 95% of the randomly generated
cases have the feature valueA= a, the estimated probabilityP(c) is also likely to be lower
than 0.88. This again influences the conditional probability distributions in the tables of the
variablesBandD. Recall that this effect is disregarded in our approach in order to make the

http://www.cs.uu.nl/people/michael/Tutorials/conf-int.html.
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Table 1
Experimental results obtained

n= 1000 samples P(c | x) P (x) N = 100 N = 500

RMSD MD RMSD MD

Net1(40 interv.)
P̂ (c | a,¬b,¬d, e) 0.7984 0.0586 0.0072 0.0003 0.0225 0.0020
P̂ (c | ¬a,¬b, d, e) 0.0196 0.0300 0.0667 0.0098 0.0328 0.0060

Net2(40 interv.)
P̂ (c | a, b, d) 0.9986 0.6550 0.0008 0.0001 0.0000 0.0000
P̂ (c | ¬a,¬b, d) 0.3684 0.0071 0.0169 0.0032 0.0046 0.0057

Net3(40 interv.)∗
P̂ (c | a,¬b, d, e) 0.0182 0.0411 0.0041 0.0002 0.0034 0.0004
P̂ (c | ¬a,¬b,¬d,¬e) 0.5870 0.0690 0.0052 0.0041 0.0082 0.0036
P̂ (c | a,¬b,¬d,¬e) 0.1364 0.0330 0.0062 0.0032 0.0036 0.0015

Net4(40 interv.)∗
P̂ (c | a,¬b, d,¬e) 0.6534 0.0327 0.0067 0.0024 0.0074 0.0019
P̂ (c | a,¬b, d, e) 0.9754 0.0511 0.0024 0.0007 0.0028 0.0005
P̂ (c | ¬a, b,¬d, e) 0.1712 0.0946 0.0076 0.0103 0.0072 0.0013

The asterisk * indicates network classifiers where simulations from the matrixP were used to estimate the
difference between the estimated and the real sampling distribution.

computations tractable. The probability distribution of the second network factorizes into
the following components:

P(c | a, b, d)
= P(c | a)P (b | c)P (d | b, c)
P (c | a)P (b | c)P (d | b, c)+ (1− P(c | a))P (b | ¬c)P (d | b,¬c) . (31)

The third network,Fig. 5, is a Naive Bayes classifier, which is probably one of the most
frequently used pattern classifiers. Its probability distribution factorizes into the following
components

P(c | a,¬b, d, e)= P(c)P (a | c)P (¬b | c)P (d | c)P (e | c)
P (c)P (a | c)P (¬b | c)P (d | c)P (e | c)+
(1− P(c))P (a | ¬c)P (¬b | ¬c)P (d | ¬c)P (e | ¬c).

(32)

Finally, we constructed a tree-augmented Naive Bayes (TAN) network (Friedman
et al., 1997) with the purpose of validating our approach for this type of classifier. The
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TAN-network is depicted in Fig.6. The probabilityP(c | x) factorizes as follows:

P(c | a,¬b, d,¬e)
= P(c)P (a | c)P (¬b | a, c)P (d | a, c)P (¬e | c, d)
P (c)P (a | c)P (¬b | a, c)P (d | ¬a, c)P (¬e | c, d)+
(1− P(c))P (a | ¬c)P (¬b | a,¬c)P (d | a,¬c)P (¬e | ¬c, d).

(33)

The results from the experiments shown inTable 1 indicate that the derived sampling
distribution of the posterior probability obtained from a probabilistic network classifier,
follows the real underlying distribution well. The most imprecise distributions correspond
with probabilities close to 0 or 1. The ‘binning’ into intervals causes a discretisation error
in the narrow distributions that occur for probabilities close to 0 and 1. The experiments
with the network with the skew distribution in Fig.4, does not seem to give poorer results
than the simulations with the three other classifiers.

The approach is exponential in its computational complexity. In practice, when the num-
ber of terms in the topological sett exceeds a small number (e.g., (4)), stochastic simulation
from each of the distributions in the matrixP, is necessary to estimate the sampling distribu-
tion ofPB(c | x). As each row inP represents an independent distribution, such a sampling
from each row distribution is straightforward.
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Table 2
Experimental results obtained with the Alarm network

P(a | x) P (x) N = 100 N = 500 N = 1000

RMSD MD RMSD MD RMSD MD

P̂ (a | b, c, d1, e1) 0.3356 0.0056 0.0890 0.0633 0.0177 0.0225 0.0165 0.0082
P̂ (a | b,¬c, d2, e1) 0.9954 0.0085 0.0298 0.1494 0.0076 0.0028 0.0223 0.0030
P̂ (a | b, c, d2, e2) 1.0000 0.6094 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P̂ (a | b,¬c, d1, e1) 0.5025 0.0019 0.1409 0.6941 0.0631 0.2376 0.0274 0.1204
P̂ (a | ¬b,¬c, d1, e1) 0.0011 0.0084 0.0917 0.1789 0.0015 0.0036 0.0000 0.0000

All sampling distributions ofP̂ (a | x) where simulations from the matrixP.

4.2. Experiment with the ALARM network

Experiments with the well-knownAlarm network (Beinlich et al., 1989) were performed
to give an indication of how the sampling distribution is approximated for a large (realistic)
probabilistic network classifier. Essentially, the Alarm network is a classifier because the
outcome of one particular node, corresponding to the variableLvfailure, is being moni-
tored. The markov blanket ofLvfailure contains the four feature variablesHistory, Hy-
povolemia, LvedvolumeandStrokevolume. We rename the variables in the following way:
A= Lvfailure,B=History,C=Hypovolemia,D= LvedvolumeandE=Strokevolume.We
performed simulation experiments with five different combinations of the four
feature variables, seeTable 2. The variablesA, B andC are binary whereas the feature
variablesD andE have three outcomes.

The Alarm network is difficult to sample because the distribution is skew. In more than
60% of the cases, the combination(b, c, d2, e2) occurs resulting in a probabilitŷP(a |
b, c, d2, e2) ≈ 1. In many samples, one or more conditional probabilities tend to be either
0 or 1.As the sample size grows, the estimated sampling distribution converges towards the
true underlying distribution. The largest discrepancy was observed for the rare combination
b,¬c, d1, e1. As would be expected, the sampling distributions with the smallest bias are
obtained for learning sets with a sizeN = 1000.

5. Discussion

In this article, we described how a probabilistic network can be used as a minimal error-
rate statistical classifier. The exact error rate was given and related to error rate estimates
common in statistical pattern recognition. Secondly, we derived the exact sampling dis-
tribution of the conditional probabilities in a probabilistic network classifier. Based on
this result, an approximate sampling distribution is derived for the conditional probability
P(C = c | X = x) with c the class label andx a complete feature vector.
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The experiments we performed indicate that the sampling distribution computed by our
approach corresponds well with the simulated one. Solely when the true probabilityP(c |
x) lies outside the interval(0.05,0.95), our approach results in slightly skew estimated
sampling distributions. The key to this positive result seems to be that we use the exact
bivariate binomial distributions of the underlying conditional probabilities to estimate the
sampling distribution ofP̂ (c | x). It is our advice not to use the Gaussian approximation
to the binomial distribution, unless the sample size becomes large. More specifically, the
productP(x) · N determines the fraction of cases in a databaseD that actually contribute
to estimating the conditional probabilityP(c | x). Our simulation experiments with the
Alarm network suggest that the sampling distribution (and hence confidence intervals)
become reliable whenP(x) ·N >5. The more variables and arcs a graph includes, the more
conditional probabilities need to be estimated. It is also clear from our experiments (see also
Fig. 7), that the approximation usually made that the sampling distribution is symmetric
(see, e.g., the Bayesian approach byAllen et al., 2001), does not hold, even whenP(c | x)
is rather close to 1/2.

Probabilistic networks, in general, suffer from thecurse of dimensionality. A large num-
ber of variables or a graph where one or more nodes have many parents, implies an in-
creasing variance of the parameter estimates. This follows directly from the bivariate bi-
nomial distribution derived in the appendix. When an increasing number of parameters
come into play, while the sizeN of the learning database remains constant, the variance
of the probability estimateP̂ (c | x) inevitably grows. Our approach to computing the
sampling distribution can be used to control the amount of variance in the sense that the
effect of changing the size of the training setN can be estimated. Others have used a
BayesianapproachbasedonDirichlet priors to smooth the conditional probability estimates.
Dirichlet priors may be seen as an aid for controlling the curse of dimensionality through
regularization.
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We have restricted our approach to binary classification problems. The approach gen-
eralizes directly to feature variables with more than two outcomes, as was illustrated by
the experiments with the Alarm network. Our approach can be extended to problems with
more than two classes, but the computational complexity will grow exponentially. For the
two-class problem, the posterior probability distribution can be simulated using our ap-
proach when the number of independent components in the ordered sett exceeds say 4. As
shown by our experiments with the Naive bayes and the TAN classifiers as well as with
the Alarm network, such a simulation is unproblematic. Each sampled distribution (row)
in the matrixP defined in (24) is assumed to be independent from the others. Applying
the standard uniform distributionrnd —available in most modern numerical software—to
each cumulative distribution, e.g.,Pi(P̂ (xl | c, y�(Xk−1)\C ) ∈ [0 ± �)), results in an index
sk and a probabilityPk,el(sk).

Finally, we would like to mention the smoothing effect that occurs when the feature
variables are children of the class variable, rather than parents. If say four boolean variables
were used as parents, resulting in a large tableWC with 24 entries, the exact formula for
P(r̂, p̂ | r, p, x, N) derived in the appendix indicates the sampling distribution of the class
variableC. The result is a rather ragged distribution (similar to the one depicted inFig. 3),
unless either the number of cases or the probability of observing this particular combination
of the parents becomes really large. As soon as (un)conditional probabilities are sampled
independently, as is the case in all the networks used in our experiments, a more smooth
sampling distribution ofP̂ (c | x) results.

6. Conclusion

In this article, we showed how a general probabilistic network can be used as a statistical
classifier, resulting in a probabilistic network classifier.We specified how the exact error rate
canbecomputed for suchaprobabilistic network classifier,without theneedof a training set.
We then derived the exact sampling distribution for the conditional probability estimates in
a probabilistic network. Subsequently, an approach for computing the sampling distribution
and hence confidence intervals for the conditional probabilityP̂ (c | x) in a probabilistic
network classifier was derived. When the confidence intervals are accurate enough, it is
also possible to test different hypotheses regarding the probability of class membership of a
casex. Experiments revealed that our approximation performs well on general probabilistic
network classifiers (where the class node has parents as well as children), on the Naive
Bayes classifier and on tree augmented Naive Bayes networks. We also tested our approach
on the well-known Alarm network. The amount of computation required is exponential in
the number of feature variables. For medium and large scale classification problems, our
approach is well-suited for quick simulations.

In the future, several issues can be investigated further. It would be desirable to establish
a bound on the approximation error that is made by our approach. Such a bound could
hopefully indicate types of underlying probability distributions for which the approximation
derivedhereperformswell. Itwouldalsobe interesting toextendour approach to incorporate
priors on the parameters.
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Appendix A

Definep = P(x), q = P(c, x) andr = P(c | x). The sampling distributions of̂p andq̂
becomeP(p̂ N | p,N) = B(N, p) andP(q̂ N | q,N) = B(N, q). Solely for sufficiently
largeprobabilitiesandsamplesizes,p̂N >50 (Egmont-Petersenetal., 1994), thecontinuous
Gaussian distribution is suited as approximation. Consequently, we derive the distribution
of r̂ from the exact binomial distributionsB(N, p) andB(N, q). To simplify the notation,
we writeP(p̂ | p,N) meaningP(p̂N | p,N). The distribution ofp̂ is given by

P(p̂ | p,N)=
(
N

k

)
pk(1− p)(N−k), k ∈ {0, . . . , N}, (A.1)

with p̂= k/N and

(
N

k

)
the binomial coefficient. Similarly, the distribution ofq̂ becomes

P(q̂ | q,N)=
(
N

m

)
qm (1− q)(N−m), m ∈ {0, . . . , N}, (A.2)

with q̂ = m/N . It is clear thatp andq are statistically dependent,p = 0 ⇒ q = 0. As no
priors are used,̂p and q̂ may be zero. Moreover, when̂pN becomes small, the resulting
courser sampling scheme limits the possible estimates ofq̂.

Our goal is to computeP(r̂ | r, p, x, N), r̂ ∈ (0,1), fromD with r=q/p. The conditional
sampling distributionP(r̂ | r, p̂, x, N) is given by

P(r̂ | r, p̂, x, N)=
(
k

m

)
rm (1− r)(k−m), m�k, (A.3)

with r = P(c | x), r̂ = m/k andp̂ = k/N . The variablek denotes the actual number of
cases in a sample databaseD with the combinationx, whereasmdenotes the actual number
of cases inD, with the combinationx, that belong to the classc. In general, the chain rule
allows us to write the bivariate distributionP(r̂, p̂ | r, p) asP(r̂ | r, p̂, p)P (p̂ | r, p), and
becausêr is independentfrom p givenp̂ (the posterior probabilitŷr is estimated from the
subsample of cases inD with the feature vectorx, i.e.,p̂ determines the distribution ofr̂),
P(r̂, p̂ | r, p)=P(r̂ | r, p̂)P (p̂ | r, p). Finally, asp̂ is independent fromr (the probability
of observing cases with the feature vectorx marginalises over the class variable, hence the
relation betweenP(cj | x) andP(ci | x) does not influencep = ∑

iP (ci, x) = P(x)), it
follows thatP(r̂, p̂ | r, p)= P(r̂ | r, p̂)P (p̂ | p). Consequently, the bivariate distribution
P(r̂, p̂ | r, p, x, N) becomes

P(r̂, p̂ | r, p, x, N)= P(r̂ | r, p̂, x, N)P (p̂ | p, x, N). (A.4)

The expression on the right-hand side of (A.4) is a product of two binomial distributions

P(r̂, p̂ | r, p, x, N) =
(
k

m

)
rm(1− r)(k−m)

(
N

m

)
pk (1− p)(N−k),

m�k, k ∈ {0, . . . , N},
(A.5)

with r̂ = m/k, p̂ = k/N . Equation (A.5) is the exact formula for the bivariate sampling
distribution ofP̂ (c | x) andP̂ (x), for given values ofP(c | x),P(x) and the sample sizeN.
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